skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Meka, Raghu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meka, Raghu (Ed.)
    Since this paper is under journal submission, we publish only an extended abstract here. A full version can be found at https://arxiv.org/abs/2406.03938. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  2. Meka, Raghu (Ed.)
    Differential privacy and sublinear algorithms are both rapidly emerging algorithmic themes in times of big data analysis. Although recent works have shown the existence of differentially private sublinear algorithms for many problems including graph parameter estimation and clustering, little is known regarding hardness results on these algorithms. In this paper, we initiate the study of lower bounds for problems that aim for both differentially-private and sublinear-time algorithms. Our main result is the incompatibility of both the desiderata in the general case. In particular, we prove that a simple problem based on one-way marginals yields both a differentially-private algorithm, as well as a sublinear-time algorithm, but does not admit a "strictly" sublinear-time algorithm that is also differentially private. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Meka, Raghu (Ed.)
    A Matching Vector (MV) family modulo a positive integer m ≥ 2 is a pair of ordered lists U = (u_1, ⋯, u_K) and V = (v_1, ⋯, v_K) where u_i, v_j ∈ ℤ_m^n with the following property: for any i ∈ [K], the inner product ⟨u_i, v_i⟩ = 0 mod m, and for any i ≠ j, ⟨u_i, v_j⟩ ≠ 0 mod m. An MV family is called r-restricted if inner products ⟨u_i, v_j⟩, for all i,j, take at most r different values. The r-restricted MV families are extremely important since the only known construction of constant-query subexponential locally decodable codes (LDCs) are based on them. Such LDCs constructed via matching vector families are called matching vector codes. Let MV(m,n) (respectively MV(m, n, r)) denote the largest K such that there exists an MV family (respectively r-restricted MV family) of size K in ℤ_m^n. Such a MV family can be transformed in a black-box manner to a good r-query locally decodable code taking messages of length K to codewords of length N = m^n. For small prime m, an almost tight bound MV(m,n) ≤ O(m^{n/2}) was first shown by Dvir, Gopalan, Yekhanin (FOCS'10, SICOMP'11), while for general m, the same paper established an upper bound of O(m^{n-1+o_m(1)}), with o_m(1) denoting a function that goes to zero when m grows. For any arbitrary constant r ≥ 3 and composite m, the best upper bound till date on MV(m,n,r) is O(m^{n/2}), is due to Bhowmick, Dvir and Lovett (STOC'13, SICOMP'14).In a breakthrough work, Alrabiah, Guruswami, Kothari and Manohar (STOC'23) implicitly improve this bound for 3-restricted families to MV(m, n, 3) ≤ O(m^{n/3}). In this work, we present an upper bound for r = 3 where MV(m,n,3) ≤ m^{n/6 +O(log n)}, and as a result, any 3-query matching vector code must have codeword length of N ≥ K^{6-o(1)}. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Meka, Raghu (Ed.)
    Recent years have seen great progress in the approximability of fundamental clustering and facility location problems on high-dimensional Euclidean spaces, including k-Means and k-Median. While they admit strictly better approximation ratios than their general metric versions, their approximation ratios are still higher than the hardness ratios for general metrics, leaving the possibility that the ultimate optimal approximation ratios will be the same between Euclidean and general metrics. Moreover, such an improved algorithm for Euclidean spaces is not known for Uncapaciated Facility Location (UFL), another fundamental problem in the area. In this paper, we prove that for any γ ≥ 1.6774 there exists ε > 0 such that Euclidean UFL admits a (γ, 1 + 2e^{-γ} - ε)-bifactor approximation algorithm, improving the result of Byrka and Aardal [Byrka and Aardal, 2010]. Together with the (γ, 1 + 2e^{-γ}) NP-hardness in general metrics, it shows the first separation between general and Euclidean metrics for the aforementioned basic problems. We also present an (α_Li - ε)-(unifactor) approximation algorithm for UFL for some ε > 0 in Euclidean spaces, where α_Li ≈ 1.488 is the best-known approximation ratio for UFL by Li [Li, 2013]. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Meka, Raghu (Ed.)
    We prove a hardness of sampling result for the anti-ferromagnetic Ising model on random graphs of average degree d for large constant d, proving that when the normalized inverse temperature satisfies β > 1 (asymptotically corresponding to the condensation threshold), then w.h.p. over the random graph there is no stable sampling algorithm that can output a sample close in W₂ distance to the Gibbs measure. The results also apply to a fixed-magnetization version of the model, showing that there are no stable sampling algorithms for low but positive temperature max and min bisection distributions. These results show a gap in the tractability of search and sampling problems: while there are efficient algorithms to find near optimizers, stable sampling algorithms cannot access the Gibbs distribution concentrated on such solutions. Our techniques involve extensions of the interpolation technique relating behavior of the mean field Sherrington-Kirkpatrick model to behavior of Ising models on random graphs of average degree d for large d. While previous interpolation arguments compared the free energies of the two models, our argument compares the average energies and average overlaps in the two models. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Meka, Raghu (Ed.)
    The Cohn-Umans (FOCS '03) group-theoretic framework for matrix multiplication produces fast matrix multiplication algorithms from three subsets of a finite group G satisfying a simple combinatorial condition (the Triple Product Property). The complexity of such an algorithm then depends on the representation theory of G. In this paper we extend the group-theoretic framework to the setting of infinite groups. In particular, this allows us to obtain constructions in Lie groups, with favorable parameters, that are provably impossible in finite groups of Lie type (Blasiak, Cohn, Grochow, Pratt, and Umans, ITCS '23). Previously the Lie group setting was investigated purely as an analogue of the finite group case; a key contribution in this paper is a fully developed framework for obtaining bona fide matrix multiplication algorithms directly from Lie group constructions. As part of this framework, we introduce "separating functions" as a necessary new design component, and show that when the underlying group is G = GL_n, these functions are polynomials with their degree being the key parameter. In particular, we show that a construction with "half-dimensional" subgroups and optimal degree would imply ω = 2. We then build up machinery that reduces the problem of constructing optimal-degree separating polynomials to the problem of constructing a single polynomial (and a corresponding set of group elements) in a ring of invariant polynomials determined by two out of the three subgroups that satisfy the Triple Product Property. This machinery combines border rank with the Lie algebras associated with the Lie subgroups in a critical way. We give several constructions illustrating the main components of the new framework, culminating in a construction in a special unitary group that achieves separating polynomials of optimal degree, meeting one of the key challenges. The subgroups in this construction have dimension approaching half the ambient dimension, but (just barely) too slowly. We argue that features of the classical Lie groups make it unlikely that constructions in these particular groups could produce nontrivial bounds on ω unless they prove ω = 2. One way to get ω = 2 via our new framework would be to lift our existing construction from the special unitary group to GL_n, and improve the dimension of the subgroups from (dim G)/2 - Θ(n) to (dim G)/2 - o(n). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  7. Meka, Raghu (Ed.)
    There has been substantial recent concern that automated pricing algorithms might learn to collude Supra-competitive prices can emerge as a Nash equilibrium of repeated pricing games, in which sellers play strategies which threaten to punish their competitors if they ever defect from a set of supra-competitive prices, and these strategies can be automatically learned. But threats are anti-competitive on their face. In fact, a standard economic intuition is that supra-competitive prices emerge from either the use of threats, or a failure of one party to correctly optimize their payoff. Is this intuition correct? Would explicitly preventing threats in algorithmic decision-making prevent supra-competitive prices when sellers are optimizing for their own revenue? No. We show that supra-competitive prices can robustly emerge even when both players are using algorithms which do not explicitly encode threats, and which optimize for their own revenue. Since deploying an algorithm is a form of commitment, we study sequential Bertrand pricing games (and a continuous variant) in which a first mover deploys an algorithm and then a second mover optimizes within the resulting environment. We show that if the first mover deploys any algorithm with a no-regret guarantee, and then the second mover even approximately optimizes within this now static environment, monopoly-like prices arise. The result holds for any no-regret learning algorithm deployed by the first mover and for any pricing policy of the second mover that obtains them profit at least as high as a random pricing would - and hence the result applies even when the second mover is optimizing only within a space of non-responsive pricing distributions which are incapable of encoding threats. In fact, there exists a set of strategies, neither of which explicitly encode threats that form a Nash equilibrium of the simultaneous pricing game in algorithm space, and lead to near monopoly prices. This suggests that the definition of algorithmic collusion; may need to be expanded, to include strategies without explicitly encoded threats. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  8. Meka, Raghu (Ed.)
    We provide a general method to convert a "primal" black-box algorithm for solving regularized convex-concave minimax optimization problems into an algorithm for solving the associated dual maximin optimization problem. Our method adds recursive regularization over a logarithmic number of rounds where each round consists of an approximate regularized primal optimization followed by the computation of a dual best response. We apply this result to obtain new state-of-the-art runtimes for solving matrix games in specific parameter regimes, obtain improved query complexity for solving the dual of the CVaR distributionally robust optimization (DRO) problem, and recover the optimal query complexity for finding a stationary point of a convex function. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  9. Meka, Raghu (Ed.)
    We establish new correlation bounds and pseudorandom generators for a collection of computation models. These models are all natural generalization of structured low-degree polynomials that we did not have correlation bounds for before. In particular: - We construct a PRG for width-2 poly(n)-length branching programs which read d bits at a time with seed length 2^O(√{log n}) ⋅ d²log²(1/ε). This comes quadratically close to optimal dependence in d and log(1/ε). Improving the dependence on n would imply nontrivial PRGs for log n-degree 𝔽₂-polynomials. The previous PRG by Bogdanov, Dvir, Verbin, and Yehudayoff had an exponentially worse dependence on d with seed length of O(dlog n + d2^dlog(1/ε)). - We provide the first nontrivial (and nearly optimal) correlation bounds and PRGs against size-n^Ω(log n) AC⁰ circuits with either n^{.99} SYM gates (computing an arbitrary symmetric function) or n^{.49} THR gates (computing an arbitrary linear threshold function). This is a generalization of sparse 𝔽₂-polynomials, which can be simulated by an AC⁰ circuit with one parity gate at the top. Previous work of Servedio and Tan only handled n^{.49} SYM gates or n^{.24} THR gates, and previous work of Lovett and Srinivasan only handled polynomial-size circuits. - We give exponentially small correlation bounds against degree-n^O(1) 𝔽₂-polynomials which are set-multilinear over some arbitrary partition of the input into n^{1-O(1)} parts (noting that at n parts, we recover all low degree polynomials). This vastly generalizes correlation bounds against degree-d polynomials which are set-multilinear over a fixed partition into d blocks, which were established by Bhrushundi, Harsha, Hatami, Kopparty, and Kumar. The common technique behind all of these results is to fortify a hard function with the right type of extractor to obtain stronger correlation bounds for more general models of computation. Although this technique has been used in previous work, they rely on the model simplifying drastically under random restrictions. We view our results as a proof of concept that such fortification can be done even for classes that do not enjoy such behavior. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  10. Meka, Raghu (Ed.)
    We study the stochastic minimum vertex cover problem for general graphs. In this problem, we are given a graph G=(V, E) and an existence probability p_e for each edge e ∈ E. Edges of G are realized (or exist) independently with these probabilities, forming the realized subgraph H. The existence of an edge in H can only be verified using edge queries. The goal of this problem is to find a near-optimal vertex cover of H using a small number of queries. Previous work by Derakhshan, Durvasula, and Haghtalab [STOC 2023] established the existence of 1.5 + ε approximation algorithms for this problem with O(n/ε) queries. They also show that, under mild correlation among edge realizations, beating this approximation ratio requires querying a subgraph of size Ω(n ⋅ RS(n)). Here, RS(n) refers to Ruzsa-Szemerédi Graphs and represents the largest number of induced edge-disjoint matchings of size Θ(n) in an n-vertex graph. In this work, we design a simple algorithm for finding a (1 + ε) approximate vertex cover by querying a subgraph of size O(n ⋅ RS(n)) for any absolute constant ε > 0. Our algorithm can tolerate up to O(n ⋅ RS(n)) correlated edges, hence effectively completing our understanding of the problem under mild correlation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026